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SUMMARY 

An iterative method has been developed for designing wing 

section contours corresponding to a prescribed subcritical distri- 

bution of pressure. The calculations are initialized by using a 

surface panel method to analyze a baseline wing or wing-fuselage 

configuration. A first-order expansion to the baseline panel 

method equations is then used to calculate a matrix containing the 

partial derivative of potential at each control point with respect 

to each unknown geometry parameter. In every iteration cycle, the 

matrix is used both to calculate the geometry perturbation and to 

analyze the perturbed geometry. The distribution of potential on 

the perturbed geometry is established by simple linear extrapola- 

tion from the baseline solution. The extrapolated potential is 

converted to velocity by numerical differentiation, and velocity 

is converted to pressure by Bernoulli's equation. Not only is the 

accuracy of the approach good for very large perturbations, but 

the computing cost of each complete iteration cycle is sub- 

stantially less than one analysis solution by a conventional panel 

method. Example design solutions are presented to demonstrate 

that the method is accurate, numerically stable, and converges in 

only three to five iterations. 



1. INTRODUCTION 

The surface panel approach has proved to be very successful 

for the analysis of subcritical, potential flow around geometri- 

cally complex aircraft configurations (references l-10). It is 

well established that the better formulated panel methods consis- 

tently predict accurate wing pressure distributions, including the 

effect of strong fuselage-nacelle interference. A typical example 

is illustrated in Figure 1. Several investigators who have been 

aware of the power of surface panel methods have established itera- 

tive inverse techniques for designing wing section geometry 

corresponding to a prescribed distribution of pressure (refer- 

ences 11-14). However, each of the existing three-dimensional 

wing design methods suffers from two or more of the following 

shortcomings: 

i) 

ii) 

iii) 

iv) 

the calculations will not converge, 

the designed geometry is unrealistically wavy chordwise 

and/or spanwise, 

the designed geometry does not generate the prescribed 

pressure distribution near the wing leading edge, 

the computing cost of each iteration cycle is 

substantial. 
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The new design method presented in this report was developed 

by McDonnell Aircraft Company (MCAIR) under contract to NASA, 

Langley Research Center. The method is believed to be the first 

that can reliably and efficiently solve the wing design problem of 

Figure 2. The success of the method is attributed to the develop- 

ment of a formulation that overcomes the design dilemmas depicted 

in Figure 3. 

The basic mathematical approach is similar to that of the 

two-dimensional design method developed for multi-element airfoils 

(references 8 and 15). However, the present design method has a 

significant new cost-savings feature that is especially appropri- 

ate for wing-fuselage configurations. The "perturbation analysis 

method" of references 9 and 10 is employed in each design itera- 

tion cycle. As will be demonstrated in Section 2, the perturba- 

tion analysis method is an accurate and extremely efficient method 

for analyzing large changes to wing section geometry. The present 

design method is designated the "perturbation design method" 

because it is an inverse formulation for the perturbation analysis 

method. The mathematical formulation and example design solutions 

are presented in Section 3. 

Use of trade names or names of manufacturers in this report 

does not constitute an official endorsement of such products or 

manufacturers, either expressed or implied, by the National 

Aeronautics and Space Administrations. 
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2. PERTURBATION ANALYSIS METHOD 

The standard solution approach to prescribed pressure design 

problems is to divide each iteration cycle into an analysis, 

pressure calculation step and an inverse, geometry correction 

step. In the two-dimensional method of references 8 and 15, an 

entire panel method solution is calculated during each analysis 

step. Furthermore, a new geometry-velocity perturbation matrix is 

calculated for each inverse step. In spite of the fact that the 

number of computations in each iteration cycle is a cubic function 

of the number of panels, the total computing cost is relatively 

small. The reason is that typical two-dimensional problems 

require fewer than one hundred panels. 

However, the number of panels required for wing-fuselage 

configurations is an order of magnitude greater, and the preceding 

design procedure would be extremely expensive. During the initial 

phase of the present contract, it became clear that a practical 

wing-on-fuselage design procedure could not be established on the 

basis of existing panel method technology. Consequently, the 

perturbation analysis method was developed. The method is an 

extremely efficient tool for analyzing the pressure distribution 

corresponding to a series of arbitrary, small perturbations to a 

baseline wing-fuselage geometry (Figure 4). The following 

features of the perturbation analysis method make it especially 

practical for application to an iterative wing section design 

method. 
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(1) 

(2) 

(3) 

The 

The computational expense for analyzing each successive 

geometry perturbation is more than an order of magnitude 

less than that of a conventional panel method, 

The pressure distribution prediction accuracy is competi- 

tive with conventional surface panel methods for very 

large perturbations to wing section geometry, 

A pre-calculated matrix of partial derivatives for the 

paneled baseline configuration is available. Each 

element of the matrix is the rate of change of potential 

at a boundary condition control point with respect to a 

geometry parameter perturbation. For design applica- 

tions, the geometry-potential perturbation matrix can be 

efficiently converted to a geometry-pressure perturba- 

tion matrix. 

purpose of this section is to familiarize the reader with 

the fundamentals and power of the perturbation analysis method (a 

more complete description is available in references 9 and 10). 

An inverse formulation for the perturbation analysis method is 

reserved for the next section. The inverse formulation is the 

foundation for the iterative, prescribed pressure design method 

for wings and wings on fuselages. 
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2.1 MATHEMATICAL APPROACH - The perturbation analysis approach 

requires an initial baseline calculation of a conventional panel 

method solution for an arbitrary baseline configuration. 

Subsequently a matrix consisting of the partial derivatives of 

velocity potential with respect to geometry coordinates is 

calculated. The baseline solution and derivative matrix are 

calculated one time only and then stored for repetitive use. For 

each geometry perturbation, the solution surface distribution of 

velocity potential is constructed by multiplying the derivative 

matrix by a new right-hand-side. This procedure bypasses the two 

computationally expensive steps of a conventional panel method: 

calculating the influence coefficients and solving a large system 

of linear algebraic equations. 

Although the perturbation analysis method is appropriate for 

predicting the effect of arbitrary small changes to wing planform 

and fuselage geometry, the real power of the method is the 

accuracy with which large perturbations to wing thickness, camber, 

and twist can be analyzed. A simple two-dimensional example is 

the perturbation from a NACA 0012 airfoil to a circular cylinder 

illustrated in Figure 5. Unlike conventional "small disturbance" 

or "linearized" flow methods, predictions by the perturbation 

analysis method are accurate even at the leading edge of a wing. 

The reason is that only the surface potential - not velocity and 

pressure - is linearized with respect to geometry coordinate 

perturbations. It can be shown that the nonlinear terms are much 

smaller for potential than for either velocity or pressure. For 
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example, consider the flow about an elliptic cylinder. As 

illustrated in Figures 6 and 7, the variation of potential with 

thickness is exactly linear. 

Three computer programs are required in order to apply the 

perturbation analysis method (see Figure 8). The first program is 

the conventional MCAIR panel method for analyzing the baseline 

configuration. The second program employs an output solution file 

from the first program plus a differential mathematical formula- 

tion to calculate the matrix of partial derivatives of perturba- 

tion potential. For each baseline configuration, the first two 

programs generate an input file for the third program - the 

Perturbation Analysis Program. 

After the input file is generated, the first two programs are 

no longer required. The Perturbation Analysis Program can be 

executed repeatedly at low computing cost for the analyses of a 

series of perturbations to the panel corner coordinates (x,y,z)j 

of the complete aircraft configuration. The method used to 

analyze each perturbation is the same as the conventional panel 

method calculation with two significant exceptions. First, no 

influence coefficients are calculated: second, no large system of 

linear algebraic boundary condition equations is solved. Instead, 

the perturbation potential at each control point is calculated by 

linear extrapolation. The conversion of potential to surface 

velocity is based on numerical differentiation. 
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Usually the second program is executed twice for each base- 

line configuration, once at 0" incidence and once at 90" 

incidence. By employing the principle of linear superposition, 

the perturbation analysis is automatically performed at any inter- 

mediate angle of attack (Figure 9). 

2.2 EXAMPLE PERTURBATION ANALYSIS SOLUTIONS - Demonstration of - --- 

prediction accuracy for the perturbation analysis method is pre- 

sented in Figures 10-12. The baseline geometry is an isolated low 

aspect ratio wing with no camber and no twist. Coordinate 

displacements normal to the chord plane were applied in order to 

generate the fighter wing geometry illustrated in Figure lob. The 

incompressible, potential flow solution for the fighter wing was 

calculated using both the conventional surface panel methods and 

the perturbation analysis method. The distributions of pressure, 

forces, and moment (Figures 12a and 12b) demonstrate that the 

perturbation analysis method is extremely accurate for very large 

perturbations. 

In order to evaluate prediction accuracy for a configuration 

with strong wing-fuselage interference, the paneled YAV-8B Harrier 

of Figure 13 was selected as the baseline configuration. The good 

accuracy of the conventional MCAIR panel method is demonstrated by 

comparing the calculated and experimental pressure distributions 

on the baseline wing (Figure 14). Compressibility effects were 

simulated by a Gothert correction, which is available in a later 

version of the panel method than the incompressible version of 
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reference 9. Approximately 420 seconds computing time on the CDC 

CYBER 176 were required for the analysis, where 537 panels on each 

side of the symmetry plane were used to model the YAV-8B. 

For application to the perturbation analysis method, the 

partial derivative of perturbation potential (@i) at each control 

point on the YAV-8B configuration was calculated with respect to 

the waterline displacement (Zj) of each of the 150 panel corner 

points on the wing. The total computing time expended by the 

second program for 0" and 90" angles of attack was 1500 seconds on 

the CDC CYBER 176. 

The perturbation analysis method was then used to calculate 

the wing-fuselage pressure distribution corresponding to a large 

change in the wing geometry. The actual cambered supercritical 

wing with 8" twist (Figure 13) was perturbed to an uncambered, 

untwisted wing with constant NACA 0012 section geometry. It is 

obvious that this change is not recommended for the purpose of 

improving aerodynamic performance. It is simply intended to 

permit assessment of the accuracy of the perturbation analysis 

method for a relatively large change. As shown in Figure 15, the 

predicted pressure distribution agrees closely with the nearly 

exact potential flow solution calculated by the conventional 

surface panel method. However, the perturbation analysis required 

only eight seconds computing time compared to 420 seconds for the 

conventional analysis. On McDonnell Douglas computers, the total 

computing cost (including input/output) for the perturbation 

analysis was less than l/20 the cost of the conventional analysis. 
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3. PERTURBATION DESIGN METHOD 

Consider a paneled representation of a wing or wing-on- 

fuselage at a fixed, arbitrary angle of attack. Suppose that 

prescribed pressure coefficients are assigned to the panel 

centers. The objective of the design method is to determine the 

change in wing section geometry - twist, camber, and thickness - 

that most nearly corresponds to the prescribed pressure 

distribution (Figure 2). 

In the preceding section, it was shown that the pressure 

distribution corresponding to large changes in wing section 

geometry can be accurately calculated by the perturbation analysis 

method. Conversely, it is reasoned that large changes in wing 

section geometry could be accurately designed by an inverse formu- 

lation for the perturbation analysis method. That approach is the 

basis for the perturbation design method of this report. The 

inverse formulation requires iteration because pressure is a non- 

linear function of the wing section geometry coordinates. 

However, the fact that perturbation potential is a nearly linear 

function eliminates the need to perform extensive computations in 

each iteration cycle. 

A schematic of the perturbation design method is presented in 

Figure 16. The method can be used to solve very general aero- 

dynamic design problems. For example, the prescribed aerodynamic 

quantity at a panel center can be either a velocity component or 
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pressure coefficient. Arbitrary geometry parameters such as wing 

chord or fuselage shape can be selected for design. Furthermore, 

design constraints such as fixed camber or thickness can be 

imposed. Most design problems, however, are of the type 

illustrated in Figure 17. This type, designated the "standard 

wing design problem", is defined in detail below. The remainder 

of this section presents the mathematical formulation for the 

perturbation design method and example design solutions. 

3.1 STANDARD WING DESIGN PROBLEM - As illustrated in Figure 17, 

the region of panels subject to design is identified by corner 

points in the range (iA#jA) 5 (i,j) 5 (ig#jg)# where the limits 

(iA,iB,jA#jB) are selected by the user. If jA and jB are points 

on the upper and lower surface trailing edge respectively, then 

the geometry of the complete wing section at each span station i 

will be designed. At the center of each panel in the design 

region, the desired pressure coefficient is prescribed by the 

user. 

The unknowns are AZ at the panel corner points 

i (iA, jA+l) 5 (i,j) 2 (iB# jB-1)) l However, not all of the unknowns 

are permitted to be independent. As illustrated in Figure 18, 

less than one-half of the unknowns are independent. The remaining 

unknowns are generated by interpolation through the independent 

unknowns. On the span stations i = iA# iA+2, iA+4, . . . . igr each 

dependent unknown Az(i,j) is established by least squares 
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quadratic interpolation through the path of points (j-3, 

j-l, j, j+l, j+3) on the baseline configuration. For the 

remaining span stations (i = iA+l, iA+3, . . . . ig-1) # each unknown 

Az(i,j) is established by straight line interpolation through 

Az(i-1,j) and Az(i+l,j). For this type of interpolation to be 

accurate, it is implicitly assumed that the three points (i-l,j), 

(i,j), and (i+l,j) lie on nearly the same per cent chord line. 

Typical wing panelling is consistent with this assumption. A 

short computer program has been written to perform the 

interpolation on the baseline panelled configuration for all of 

the dependent variables. 

The reason for limiting the number of independent unknowns a 

priori is to prevent numerically unstable design calculations. 

Figures 19a and 19b illustrate two types of design instabilities 

that could occur if every panel corner in the design region were 

allowed to be an independent unknown. 

Consistent with the nomenclature of the perturbation analysis 

method (reference 9), each independent unknown perturbation is 

assigned an index kS. The value of AZ for perturbation number kS 

is designated Sks. A schematic of the independent unknowns is 

presented in Figure 20. The objective of the perturbation design 

method is to calculate the Values sks (1 2 kS < NKS) that most - 

nearly correspond to the prescribed pressure distribution. 
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3.2 MATHEMATICAL FORMULATI~NFOR PERTURBATION DESIGN METHOD - For 

any panelled baseline configuration, application of the perturba- 

tion design method requires that the arrays $i and @i/ask, have 

been calculated a priori. (I i is the perturbation potential at the 

ith control point and 8$i/aSks is the rate of change of $i with 

respect to independent geometry perturbation number kS. The MCAIR 

3-D Subsonic Potential Flow Program and MCAIR 3-D Geometry 

Influence Coefficient Program will automatically calculate the 

required arrays and store them on a computer disk file. The 

perturbation design method can then be used to calculate the 

geometry perturbation that most nearly matches prescribed 

aerodynamic properties within the limitations of a minimal least 

square error. 

At any panel center selected by the user, one or more 

properties can be prescribed. The property can be either pressure 

coefficient (c,) or velocity component in an arbitrary, specified 

direction. The prescribed value of an aerodynamic quantity at a 

panel center is designated QPi, where there is one index i for 

each prescribed value (1 < i < "DES). - - 

Arbitrary geometric constraints can be imposed upon the inde- 

pendent unknowns (Sks). Each geometric constraint is expressed as 

a linear equation 

"D 

c [c. .s 1 = CHRS 
. lD=l =D kS tiD) (1) 
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Where nD# ciD, and CRHS are arbitrary values specified by the 

user. Depending upon the values specified, the constraint 

equation can be used to fix the cross-sectional area of a wing 

section, fix the thickness at one point, and so forth. 

The aerodynamic design problem can now be expressed in 

mathematical form. The objective is to calculate the array of 

independent geometric unknowns Sks (1 5 kS 2 NKS) that will 

minimize the following function E. 

"DES 

E = C WDES~ l AREAi l (Qi - Qp )2 

i=l 
i 

"CON (2) 

+c C. 
j=l =1 =D l ‘ks (i,) - CRHS 

where (1) each i (1 5 i 5 "DES) corresponds to one prescribed aero- 

dynamic quantity at one panel center, 

(2) each j (1 2 j 5 WON) corresponds to a geometric 

constraint equation, 

(3) the weights WDESi and WCONj are specified by the user 

(typically, WDESi = 1.00 and WCONj >> l.OO), 

(4) AREAi is the area on the baseline configuration of the 

panel corresponding to prescribed quantity Opi, and 
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(5) (Qi - Qpi) is the difference between the calculated and 

prescribed values of an aerodynamic property. 

Iteration is used to solve for the array of unknowns Sks 

corresponding to the minimum value of E. As depicted in 

Figure 16, each iteration cycle is divided into an inverse step in 

which the geometry perturbation is calculated and a direct step in 

which the perturbed or updated geometry is analyzed. 

In the inverse step of each iteration cycle, the matrix of 

derivatives is calculated. Then the change in Qi induced by a 

small perturbation to the array Sks can be expressed as 

NKS 

By incorporating equation (3) in equation (2) and minimizing E 

with respect to dSkS, a system of linear, algebraic equations is 

established. The solution by standard matrix algebra provides the 

values dSkS* The updated geometry is then analyzed by the 

perturbation analysis method. 

One might expect 
aQi 

that recalculation of the matrix [F-3 
kS 

during each iteration cycle would requre substantial computing 

expense. However, the following approach has proved to be both 

very efficient and accurate. 
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_ ._ _._._-_____. A ._._ AZ.---.--- 
-, 

..-- -m-----w-- --- - ..---- - .__ _ ..-- 

Consider an aerodynamic quantity Qi, which can be either 

pressure coefficient or a velocity component at the center of some 

panel. Figure 21 illustrates the panel of interest and 

neighboring control points. If Qi is incompressible pressure 

coefficient, then 

*i = % = l - (VZ + v; + v;, 
aQi 

= as 
kS 

-2(Vx, v 8 Vz) l & 

Y 
kS 

(v,,vy’vz) 

(4) 

(5) 

If Qi is velocity component in an arbitrary, fixed direction (with 

direction cosines cosx, cosy, cosz), then 

'i 
="v - (cosx,cosy,cosz) (6) 

aQi 
PC 
as,- 

(cosx,cosy,cosz) . + 
3 kS 

Wx,Vy’Vz) 

Equation (5) and (7) indicate 

cient or velocity component, 

(7) 

that whether Qi is pressure coeffi- 

the problem of calculating as aQi is 
kS 

essentially reduced to calculating the velocity derivatives 
aVX avy av, 

(- - asks' asks' asks)- This is discussed below. - 

At the center of the panel of interest (Figure 21), the veloc- 
j. 

ity vector V is 

3 

v = vxzx+v 

+ + + 

Y eY 
+ Vz eZ = VW + ;+ 
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On the basis of the perturbation potential 4 at approximately 20 
-f 

neighboring control points j, V @ can be calculated by numerical 

differentiation. This is expressed mathematically as 
$20 

+ 
QI#I = (9) 

j=l 

where the scalars aj, bj, and Cj are functions of the corner point 

coordinates of the neighboring panels. A simplified analogue of 

equation (9) for one-dimensional numerical differentiation is pre- 

sented in Figure 22. (The three-dimensional numerical differentia- 

tion that is actually employed is based upon the assumption that 

neighboring panels stretch or shrink approximately the same per- 

centage. A more accurate algorthim could be introduced at the 

expense of greater compexity, but the present approach 

demonstrated to be adequate.) 

BY substituting equation (9) into equation 

differentiating, the desired velocity derivatives can be 

as $20 

a - CVx,VyrV,) 
ask S 

has been 

(8) and 

expressed 

(10) 

+ -t + 
(a.e + b.e 

7x 3Y 
+ Cjez) 

The only term in equation (10) that requires substantial expense 
. w-i to compute 1s aSks. Fortunately, it is also the only term that is 
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nearly independent of perturbations to wing thickness, camber, and 

twist. Therefore, the precalculated baseline matrix 
a@i 

Las -1 that 
kS 

is available on computer disk file can be used in equation (10) 

during every iteration cycle. Substitution of equation (10) into 
aQi 

equation (5) or (7) yields the desired value, -. 
aSkS 

A significant feature of the preceding approach is that the 

accuracy of the calculated matrix 
aQi 

Las -1 is competitive with an 
kS 

exact first order expansion during each iteration cycle. However, 

much less computing effort is required. 

In fact, the number of computations required for a complete 

iteration cycle is relatively small. The reason is apparent upon 

consideration of each calculation step in Figure 16. For example, 

consider the system of linear, algebraic equation to be solved for 

the perturbations to the independent unknowns. Typically, fewer 

than one hundred unknowns are sufficient for wing design, compared 

to several hundred for a conventional panel method analysis of a 

wing-fuselage. Also, consider the last step of each iteration 

cycle - analyzing the updated geometry. The extremely efficient 

perturbation analysis method is used for that calculation. 

The perturbation design method has been automated and is 

operational on the McDonnell Douglas CYBER 176. The computer 

program is designated "MCAIR Perturbation Design Program (Version 

l)." A demonstration of the accuracy, efficiency, and numerical 

stability of the method is presented in the next section. 
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3.3 EXAMPLE DESIGN SOLUTIONS - Two example solutions by the 

perturbation design method are presented belaw. The calculations 

were performed on the McDonnell Douglas CDC CYBER 176. 

In the first design problem, the analytical pressure distri- 

bution for an infinite circular cylinder was prescribed. The 

baseline geometry is a NACA 0012 airfoil represented by 26 panels. 

The calculations converged to the minimum root-mean-square error 

in four iterations. As shown in Figure 23, the solution geometry 

is nearly circular. The slight discrepancy that does exist is 

attributable to the sparse panelling aft of 50% chord. The stream- 

wise geometry interpolation techniques of Figure 18 would have 

been substantially more accurate if 30 or more panels were used to 

represent the geometry, instead of only 26. 

In the second example, the objective is to design the fighter 

wing section geometry of Figure lob by starting from the baseline 

wing panelling of Figure 10a. The fighter wing pressure distribu- 

tion at 0" angle of attack was prescribed at the center of the 208 

panels. The converged solution after 3 iterations is presented in 

Figures 24a and 24b. Although the designed geometry is close to 

the target, it is again apparent that slightly greater chordwise 

panel density would have permitted a better match on the lower 

surface at the tip. 
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Additional design examples have been successfully calculated 

using the panelling of Figure 10a as a baseline. A typical solu- 

tion requires 3 to 5 iteration cycles. The computing time for 

each complete iteration cycle is approximately 5 seconds, compared 

to 53 seconds for one conventional panel method analysis. 
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4. CONCLUSIONS 

The perturbation analysis and perturbation design methods are 

similar to classical thin wing theory in the sense that small 

disturbance "linearized" assumptions are employed. This mathe- 

matical simplification generates extensive computational savings 

for aerodynamic problems involving successive iteration, such as 

design. 

On the other hand, the restrictions of classical thin wing 

theory have been elminated. Compared to an exact potential flow 

solution, the present approach is quite accurate for thick wings, 

large leading edge radius or camber, and high angle of attack, 

The success of the perturbation design method is attributed to the 

inclusion of all significant first-order geometry-pressure peturba- 

tion terms in each iteration cycle. This leads to rapid solution 

convergence, in spite of the fact that the entire distribution of 

surface potential is constructed by simple linear extrapolation. 
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YAV-6B Surface Panel Modeling Upper Surface Isobar Pattern 

Mach = 0.5 6.4’ Angle-of-Attack 

Flgura 1. Prodiction Accuracy of MCAIR Panal Method 
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Given: 0 Fuselage Geometry 
l Baseline Wing 
0 Angle-of-Attack 
a Prescribed Pressure Distribution (Cpi) 

Calculate: Wing Section Geometry 

t Unknown Geometric 
Displacements AZ 

Typical Wing Secti on 

x Prescribed Pressure Locations 

Figure 2. Objoctlvo of the Design Method 
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SYMPTMS CAUSE REMEDY 

. CALCULATED PRESSURES OVERLY . SOURCE SINGULARITIES . COMBINED SOURCE - DOUBLETS 
SENSITIVE TO CONTOUR (GREEN'S IDENTITY) 
SMIOTHNESS 

. CALCULATIONS Do NOT CONVERGE . DIRICHLET BOUNDARY COWDITIOWS . FIRST-ORDER MATHEMATICAL 

EXPANSION (aCp/&) 

l INACCURATE LEADING EDGE DESIGN l TRANSPIRATION PRTNC PAL 
CONTOURS (EUUIVALENT BLOWING \ 

. UNREALISTICALLY WAVY DESIGN . ONE UNKNOWN COORDINATE PER . MIRE PRESSURES THAN UNKWNS 
CONTOURS PRESCRIBED PRESSURE 

. LEAST SQUARES 

. HIGH COST PER ITERATION . CEMPLETE PANEL METHOD ANALYSIS . PERTURBATION ANALYSIS METHOD 
DURING ITERATION CYCLE 



Perturbed Geometry 
+ (AX, AY, AZ)j 

Objective 

0 Subsonic lnviscid Analysis of Multiple Geometry 
Perturbations at Small Additional Cost 

Approach 
0 Precalculated Baseline Matrix of Potential 

Derivatives TG ,$$ ,$$} 

l Linear Extrapolation 

WI+ Nil=& + T Axj+~ Ayj+$AZj 
i i > 

Figure 4. Pwtufbatlon Analysis Method 

28 



t 
cbomotfy 
perturbation 

1 (NACA-0012 
to Circle) 

-3 

-2 

cp -1 

0 

1 

- Exact Potential 0 Perturbation analysis 
flow solution met hod 

0 0 02 0.4 02 0.4 0.6 0.5 0.6 0.5 1.0 1.0 

Flgun 5. umplo Domonrtnth ef l orlaBfbHon 
AMiyols Ywtod 

2-D Incomprosrible Flow 
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$J 
-0.50 - 2.0 

-025 - 1.0 

V 

0.5 
Thickness - t 

Flgure 6. Vartrtim of Fkw P~rtkr with Thkkmrr 
Elliptical Cylinder at 0’ Incidence 
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0.6C 

0.40 

0.20 

a 

- 4 

- 2 

- 0 

I 
fV#Sl I 

,X 

0 0.5 1.0 

m-m- 

/ 0.20 
+----IL- 0.0 

0 0.5 
Thickness - t 

1.0 

Figure 7. Variation of Flow Croportks with lhicknoss 
Elliptical Cylinder at 90’ Incidence 
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nput 

Lpproact 

Jutput 

#CAM 3-D 
iubsonic Pottntid 

Fbw Program 

l Baseline 
Geometry 
OL Y. q 

l Conventional 
Panel Method 

D Baseline 
Potential 
Distribution #i 

D Baseline 
Aerodynamic 
Ropcfti!SS 

MCAIR 3-D 
@amdry 
Influence 

Codlici8nt 
Proarrm 

0 Baseline 
Geometry 
k Y* q 

l Baseline 
Potential 
Distribution 4; 

0 First-Order 
Expansion to 
Panel Method 
Formulation 

l Derivative 
Matrix 
(ib#@xj , 
WiOYj I 
a$+/$) 

MCAIR 3-D 

Anrlysis 
hogrrm 

D Baseline 
Properties 
lx. Y. z)j- @i 

) Derivative Matrix 
@@i. a@iOvj 
&t@j) 

D Geometry 
Perturbation 
(Ax, Ay. Azli 

) Linear 
Extrapolation 
Ah= 
f i(@i/oxj) AX 

+ (&#+/aYj) AYj 
+(&$/azi) AZi: 

) Aerodynamic 
Properties 
of Perturbed 
Geometry 

Figure 8. lho Throw Computer Programs for the 
l wturbrtion Analysis Method 
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+cosa’ @ I ‘baseline 2 Ayj + 
i O'a 9 .a I- 

+ Din a l 

I 
91 $Ayj+ )I KPa 

Flgura 9. Char Suporposltion of 0. and 90. Solutions 
Porturbrtion Analysis Method 
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Wing Section - NACAUO12 
206 Panels per Semi-Span 

Planform 
Aspect Ratio 2.9 
Taper Ratio 0.27 
Leading Edge Sweep 45’ 
Trailing Edge Sweep 11.3’ 

Figure 108. br8ollno Wing Panolfng for Porturbrtlon 
Anrlyrls lost Cams 
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I-- Root Sectionp 1 TiD Section I 

-P I I 

c 

Flgure 10 b. Goomotry Porturbrtion Test Care 
Fixed Planform Geometry 

35 



. __ 

- 0.8 

- 0.6 
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CP 
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- 0.4 
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- 0.2 

0 
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I 
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Inboard I 

I I I I 

0.6 1 I I I I I 
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XR 

Figure llr. grsolino Pnrruro Dlrtributlon 
Se Angle-of-Attack 

MCAtR Panel Method 
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0.4 

CQ 0.2 

0 

0.03 

0.02 

c,j 0.01 

0 

-0.01 

’ 0.04 
0 0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0 

Cm 

0.08 

Flgun llb. Brsolino Force and Moment Distribution 
at 5. Angle-of-Attack 
MCAIR Panel Method 

37 



38 

0.6: 

- 0.6 

Cp -0.4 

- 0.2 

( 

0.; 

0.4 

0.e 

I I 
Outboard 

(2ylb = 0.81) 

, - “Exact” solution 

02 0.4 0.6 Od 1.0 02 0.4 0.6 Od 1.0 
xk xk 

Flgure 12a. Pressure Dirtrtbution for Perturbed Wing 
at 5O Angleof-Attack 

Fighter 



CL CD CM 
- “Exact” solution 0.318 0.0112 zEE”.038 

0 Perturbation 
analysis method 0.320 0.0106 - 0.038 

0.4 

cr 0.2 

0 

cd 0.01 

0.4 0.6 0.8 1.0 
5/b 

Flgure 12b. Force and Moment Dlstrlbution for Portutid Wing 
at 5’ Angle-of-Attack 

Fighter 
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0 I 
Tip Section 

7.6% t/c 
- 5’ Incidence I 

0 
h 

Exposed.Root Section 
11.5% t/c 

+ 3’ Incidence 

FIgwe 13. Pm&d Ropnrmtrtlon of ttto YAWS 
63t Panoh on Each Sldo of Symmetry Plane 
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1 
GIVEN: MSELIHE CONFI6URATION PANELLING 

PRECALCULATED ARRAYS: C 
Pi 

I USER INPUT: PRESCRIBED PRESSURE DISTRIBUTION 
I 

I I 
Cmwn HATRI X I 3011 bz,J TO [acpi/aq,, 

SOLVE LINEAR, ALGEBRAIC EONS. FOR Azk 

*‘Pi ‘F Et!i]- Azk 

I 
UPDATE GEOMETRY: zk = zk + Azk 

I 

UPDATE PRESSURE : PERTURBATION ANALYSIS METHOD 

I TEST FOR CONVERGENCE I 
NO J I 

Flgure 16. Schematic of Porturbatlon Derlgn Method 
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Unknowns: 

Typical Wing Section 

User Specified Quantities 

o( 
1 iA, 16, /At is 

I 

0 2 Cp at Panel Centers 

Figure 17. Standard Wlng Design Problem 
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“Even” Span Stations (iA, I)?,+%. . . , Ig-%lB) 

For Each “Even” j OA+2,jA+4,...,jB-4,jB-2) 

AZ (4 i) is generated by quadratic w-3 D interpolation through 4 A 

independent points A, B, C, D 

I 

I I 
I- 

I-1 
I 1+1 

t 
I 

1 

I lgOdd” Span Stations (iA+l,IA+3 ,..., iB-3,iB-1) 
I 

A2 (1, I) Is generated by linear interpolation between 
span stations I - 1 and i + 1 

. 

Flgun 18. Interpolation Schema for Dependent Unknowns 
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Pressure at Panel Center Does Not Control 
Streamwise Slope Oscillations 

Figure lga. Wavy Wall Design instability 

Average Plane of Panel Does Not Control 
Corner Point Oscillations 

Figure lob. Four-Comer Design Instability 

46 

_- \ 



sks= AZ (1 Sks INKS) 

Figure 20. Ordering of Independent Unknowns gks 
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x 

x 

0 Panel Corners 

X Control Points 

Flgure 21. Schomutfc of a Grid of Panels 
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PARABOLA 

I I I 

I I I ____---_c~--. - @ 
x2 x1 x3 X 

WHERE 

tan 8 = ($J 
X2 

= q3, + a2e2 + a3e3 

I 

- (X3-X2) 
a, = 

(x2-x, ) (x3-x, ) 

1 a2 = 

(g.)-(fz?) 
(“3-X, 1 

I 
a3 = 

by, 1 
(x3-x2)(x3-x, 1 

Flgure 22. Simple One Dimonslonal Numerical Differentiation 
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-3. 

-2. 

-1. 

0. 

1. 

a) Pressure Distribution 

e-w Baseline (NACA 0012) 

7 Prescribed Pressure 

0 Converged Solution 
(4 Iterations) 

Baseline (NACA 0012) 

Target Geometry 

Converged Solution 
(4 Iterations) 

b) Geometry 

Figure 23. Circular Cylinder Design Solution 
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Planform 

Tip 

a-- Baseline Wing Section (NACA 0012) 

- Target Geometry (Fighter) 

0 Converged Solution 
(3 Iterations) 

-a- Baseline 

Prescribed Pressure 

0 Converged Solution 
(3 Iterations) 

0.6 L 

OW 1.0 
8k 

a) Geometry 

Outhoard 
(I) - 0.81) 

0.6 i- 

I I I I I 0 0.2 I 
0.4 0.6 0.6 1.0 

xk 

b) Pressure Dlstrlbution 

Figure 24a. Exrmplo Wing Design Solution 
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